Among these Albert Einstein is the best.So my answer is,
ALBERT EINSTEIN
I got this information about him.
*Introduction
Albert Einstein (German pronunciation (help·info)) (March 14, 1879 – April 18, 1955) was a German-Jewish theoretical physicist widely regarded as the most important scientist of the 20th century and one of the greatest physicists of all time. He formulated the special and general theories of relativity; moreover, he made significant contributions to quantum mechanics, statistical mechanics, and cosmology. He was awarded the 1921 Nobel Prize for Physics for his explanation of the photoelectric effect in 1905 (his "wonderful year") and "for his services to Theoretical Physics."
After British solar eclipse expeditions in 1919 confirmed that light rays from distant stars were deflected by the gravity of the Sun in the amount he had predicted in his theory of relativity, Einstein became world-famous, an unusual achievement for a scientist. In his later years, his fame perhaps exceeded that of any other scientist in history. In popular culture, his name has become synonymous with great intelligence and genius.
*Youth and college
Einstein was born on March 14, 1879 in the city of Ulm in Württemberg, Germany, about 100 km east of Stuttgart. His father was Hermann Einstein, a salesman who later ran an electrochemical works, and his mother was Pauline, née Koch. They were married in Stuttgart-Bad Cannstatt. Albert's family members were all non-observant Jews and he attended a Catholic elementary school. At the insistence of his mother, he was given violin lessons. Though he initially disliked the lessons, and eventually discontinued them, he would later take great solace in Mozart's violin sonatas.
When Einstein was five, his father showed him a pocket compass, and Einstein realized that something in "empty" space acted upon the needle; he would later describe the experience as one of the most revelatory events of his life. He built models and mechanical devices for fun and showed great mathematical ability early on.
In 1889, a medical student named Max Talmud (later: Talmey) introduced Einstein to key science and philosophy texts, including Kant's Critique of Pure Reason. Two of his uncles would further foster his intellectual interests during his late childhood and early adolescence by recommending and providing books on science, mathematics and philosophy.
Einstein attended the Luitpold Gymnasium, where he received a relatively progressive education. He began to learn mathematics around age twelve; in 1891, he taught himself Euclidean plane geometry from a school booklet and began to study calculus. While at the Gymnasium, he clashed with authority and resented the school regimen, believing that the spirit of learning and creative thought were lost in such endeavors as strict memorization.
In 1894, following the failure of Hermann Einstein's electrochemical business, the Einsteins moved from Munich to Pavia, a city in Italy near Milan. Einstein's first scientific work, called "The Investigation of the State of Aether in Magnetic Fields", was written contemporaneously. Albert remained behind in Munich lodgings to finish school, completing only one term before leaving the gymnasium in the spring of 1895 to rejoin his family in Pavia. He quit a year and a half prior to final examinations without telling his parents, convincing the school to let him go with a medical note from a friendly doctor, but this meant that he had no secondary-school certificate.[1] That year, at the age of 16, he performed the thought experiment known as "Albert Einstein's mirror". After gazing into a mirror, he examined what would happen to his image if he were moving at the speed of light; his conclusion, that the speed of light is independent of the observer, would later become one of the two postulates of special relativity.
Although he excelled in the mathematics and science portion of the Eidgenössische Technische Hochschule (ETH, Swiss Federal Institute of Technology, in Zürich) entrance exam the following year, his failure of the liberal arts portion was a setback; his family sent him to Aarau, Switzerland to finish secondary school, and it became clear that he was not going to be an electrical engineer as his father intended for him. There, he studied the seldom-taught Maxwell's electromagnetic theory and received his diploma in September 1896. During this time, he lodged with Professor Jost Winteler's family and became enamoured with Marie, their daughter and his first sweetheart. Einstein's sister, Maja, who was perhaps his closest confidant, was to later marry their son, Paul, and his friend, Michele Besso, married their other daughter, Anna.[2] Einstein subsequently enrolled at the Eidgenössische Technische Hochschule in October and moved to Zürich, while Marie moved to Olsberg, Switzerland for a teaching post. The same year, he renounced his Württemberg citizenship and became stateless.
In the spring of 1896, the Serbian Mileva Marić started initially as a medical student at the University of Zurich, but after a term switched to the same section as Einstein as the only woman that year to study for the same diploma. Einstein's relationship with Marić developed into romance over the next few years, which Einstein's family opposed based on the fact that she was not Jewish, older, and physically "defective."[3]
In 1900, Einstein was granted a teaching diploma by the Eidgenössische Technische Hochschule (ETH Zurich). Einstein then published his first paper, on the capillary forces of a drinking straw, titled "Folgerungen aus den Capillaritätserscheinungen", which translated is "Consequences of the observations of capillarity phenomena" (found in "Annalen der Physik" volume 4, page 513). In it, he tried to unify the laws of physics, an attempt he would continually make throughout his life. Through his friend Michelle Besso, an engineer, Einstein was presented with the works of Ernst Mach, and would later consider him "the best sounding board in Europe" for physical ideas. During this time, Einstein discussed his scientific interests with a group of close friends, including Besso and Marić. The men referred to themselves as the "Olympia Academy". Einstein and Marić had a daughter out of wedlock, Lieserl Einstein, born in January 1902. Her fate is unknown; some believe she died in infancy, while others believe she was given out for adoption.
*Works and doctorate
Einstein could not find a teaching post upon graduation, mostly because his brashness as a young man had apparently irritated most of his professors. The father of a classmate helped him obtain employment as a technical assistant examiner at the Swiss Patent Office[4] in 1902. There, Einstein judged the worth of inventors' patent applications for devices that required a knowledge of physics to understand — in particular he was chiefly charged to evaluate patents relating to electromagnetic devices.[5] He also learned how to discern the essence of applications despite sometimes poor descriptions, and was taught by the director how "to express [him]self correctly". He occasionally rectified their design errors while evaluating the practicality of their work.
Einstein married Mileva Marić on January 6, 1903. Einstein's marriage to Marić, who was a mathematician, was both a personal and intellectual partnership: Einstein referred to Mileva as "a creature who is my equal and who is as strong and independent as I am". Ronald W. Clark, a biographer of Einstein, claimed that Einstein depended on the distance that existed in his and Mileva's marriage in order to have the solitude necessary to accomplish his work; he required intellectual isolation. Abram Joffe, a Soviet physicist who knew Einstein, in an obituary of Einstein, wrote, "The author of [the papers of 1905] was ... a bureaucrat at the Patent Office in Bern, Einstein-Marić" and this has recently been taken as evidence of a collaborative relationship. However, according to Alberto A. Martínez of the Center for Einstein Studies at Boston University, Joffe only ascribed authorship to Einstein, as he believed that it was a Swiss custom at the time to append the spouse's last name to the husband's name.[6] Whatever the truth, the extent of her influence on Einstein's work is a highly controversial and debated question.
In 1903, Einstein's position at the Swiss Patent Office had been made permanent, though he was passed over for promotion until he had "fully mastered machine technology".[7] He obtained his doctorate after submitting his thesis "A new determination of molecular dimensions" ("Eine neue Bestimmung der Moleküldimensionen") in 1905.
That same year, in his spare time, he wrote four articles that participated in the foundation of modern physics, without much scientific literature to which he could refer or many scientific colleagues with whom he could discuss the theories. Most physicists agree that three of those papers (on Brownian motion, the photoelectric effect, and special relativity) deserved Nobel Prizes. Only the paper on the photoelectric effect would be mentioned by the Nobel committee in the award. The reason for this was that the time of the award, the photoelectric effect had the most unchallenged experimental evidence behind it, although the Nobel committee expressed the opinion that Einstein's other work would be confirmed in due course.
The award for the photoelectric effect is ironic, not only because Einstein is far better-known for relativity, but also because the photoelectric effect is a quantum phenomenon, and Einstein became somewhat disenchanted with the path quantum theory would take.
*Annus Mirabilis Papers
Einstein submitted this series of papers to the "Annalen der Physik". They are commonly referred to as the "Annus Mirabilis Papers" (from Annus mirabilis, Latin for 'year of wonders'). The International Union of Pure and Applied Physics (IUPAP) commemorated the 100th year of the publication of Einstein's extensive work in 1905 as the 'World Year of Physics 2005'.
The first paper, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light", ("Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt") proposed that "energy quanta" (which are essentially what we now call photons) were real, and showed how they could be used to explain such phenomena as the photoelectric effect. This paper was specifically cited for his Nobel Prize. Max Planck had made the formal assumption that energy was quantized in deriving his black-body radiation law, published in 1901, but had considered this to be no more than a mathematical trick. The photoelectric effect thus provided a simple confirmation of Max Planck's hypothesis of quanta.
His second article in 1905, named "On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid", ("Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen") covered his study of Brownian motion, and provided empirical evidence for the existence of atoms. Before this paper, atoms were recognized as a useful concept, but physicists and chemists hotly debated whether atoms were real entities. Einstein's statistical discussion of atomic behavior gave experimentalists a way to count atoms by looking through an ordinary microscope. Wilhelm Ostwald, one of the leaders of the anti-atom school, later told Arnold Sommerfeld that he had been converted to a belief in atoms by Einstein's complete explanation of Brownian motion.[8]
Einstein's third paper that year, "On the Electrodynamics of Moving Bodies" ("Zur Elektrodynamik bewegter Körper"), was published in June 1905. This paper introduced the special theory of relativity, a theory of time, distance, mass and energy which was consistent with electromagnetism, but omitted the force of gravity. While developing this paper, Einstein wrote to Mileva about "our work on relative motion", and this has led some to ask whether Mileva played a part in its development. A few historians of science believe that Einstein and his wife were both aware that the famous Frenchman Henri Poincaré had already published the equations of Relativity, a few weeks before Einstein submitted his paper; most believe their work was independent, especially given Einstein's isolation at this time. Similarly, it's debatable if he knew the 1904 paper of Lorentz which contained most of the theory and to which Poincaré referred. See also relativity priority dispute.
In a fourth paper, "Does the Inertia of a Body Depend Upon Its Energy Content?", ("Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?"), published late in 1905, he showed that from relativity's axioms, it is possible to deduce the famous equation which shows the equivalence between matter and energy. The energy equivalence (E) of some amount of mass (m) is that mass times the speed of light (c) squared: E = mc².
*Middle years
In 1906, Einstein was promoted to technical examiner second class. In 1908, Einstein was licensed in Bern, Switzerland, as a Privatdozent (unsalaried teacher at a university). During this time, Einstein described why the sky is blue in his paper on the phenomenon of critical opalescence, which shows the cumulative effect of scattering of light by individual molecules in the atmosphere.[9] In 1911, Einstein became first associate professor at the University of Zurich, and shortly afterwards full professor at the (German) University of Prague, only to return the following year to Zurich in order to become full professor at the ETH Zurich. At that time, he worked closely with the mathematician Marcel Grossmann. In 1912, Einstein started to refer to time as the fourth dimension (although H.G. Wells had done this earlier, in 1895 in The Time Machine).
In 1914, just before the start of World War I, Einstein settled in Berlin as professor at the local university and became a member of the Prussian Academy of Sciences. He took Prussian citizenship. From 1914 to 1933, he served as director of the Kaiser Wilhelm Institute for Physics in Berlin. He also held the position of extraordinary professor at the University of Leiden from 1920 until 1946, where he regularly gave guest lectures.
In 1917, Einstein published "On the Quantum Mechanics of Radiation" ("Zur Quantenmechanik der Strahlung", Physkalische Zeitschrift 18, 121-128). This article introduced the concept of stimulated emission, the physical principle that allows light amplification in the laser. He also published a paper that year that used the general theory of relativity to model the behavior of the entire universe, setting the stage for modern cosmology. In this work he created his self-described "worst blunder", the cosmological constant.
On May 14, 1904, Albert and Mileva's first son, Hans Albert Einstein, was born. Their second son, Eduard Einstein, was born on July 28, 1910. Hans Albert became a professor of hydraulic engineering at the University of California, Berkeley, having little interaction with his father, but sharing his love for sailing and music. Eduard, the younger brother, intended to practice as a Freudian analyst but was institutionalized for schizophrenia and died in an asylum. Einstein divorced Mileva on February 14, 1919, and married his cousin Elsa Löwenthal (born Einstein: Löwenthal was the surname of her first husband, Max) on June 2, 1919. Elsa was Albert's first cousin (maternally) and his second cousin (paternally). She was three years older than Albert, and had nursed him to health after he had suffered a partial nervous breakdown combined with a severe stomach ailment; there were no children from this marriage.
*General relativity
In November 1915, Einstein presented a series of lectures before the Prussian Academy of Sciences in which he described his theory of gravity, known as general relativity. The final lecture ended with his introduction of an equation that replaced Newton's law of gravity, the Field Equation.[10] This theory considered all observers to be equivalent, not only those moving at a uniform speed. In general relativity, gravity is no longer a force (as it is in Newton's law of gravity) but is a consequence of the curvature of space-time.
During a solar eclipse in 1919, Arthur Eddington supervised measurements of the bending of star light as it passed close to the Sun. This effect is called gravitational lensing and amounts to twice the Newtonian prediction. The observations were carried out in Sobral, Ceará, Brazil, as well as on the island of Principe, at the west coast of Africa. Eddington announced that the results confirmed Einstein's prediction and The Times reported that confirmation on November 7 of that year, thus cementing Einstein's fame.
Many scientists, in Germany in particular, were still unconvinced for various reasons ranging from disagreement with Einstein's interpretation of the experiments, to a belief that an absolute frame of reference was necessary. In Einstein's view, most of the objections were from experimentalists with very little understanding of the theory involved.[11] Einstein's public fame which followed the 1919 article created resentment among these scientists some of which lasted well into the 1930s.[12]
On March 30, 1921, Einstein went to New York to give a lecture on his new Theory of Relativity, the same year he was awarded the Nobel Prize. Though he is now most famous for his work on relativity, it was for his earlier work on the photoelectric effect that he was given the Prize, as his work on general relativity was still disputed. The Nobel committee decided that citing his less-contested theory in the Prize would gain more acceptance from the scientific community.
*The "Copenhagen" interpretation
Einstein postulated that light can be described not only as a wave with no kinetic energy, but also as massless discrete packets of energy called quanta with measurable kinetic energy (now known as photons). In 1909 Einstein presented his first paper on the quantization of light to a gathering of physicists and told them that they must find some way to understand the dual wave-particle nature of light (Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung, available in its English translation The Development of Our Views on the Composition and Essence of Radiation).
In the mid-1920s, as the original quantum theory was replaced with a new theory of quantum mechanics, Einstein balked at the Copenhagen interpretation of the new equations either because it settled for a probabilistic, non-visualizable account of physical behaviour, or because it described matter as being in necessarily contradictory states. However, Einstein agreed that the theory was the best available[citation needed], but he looked for a more "complete" explanation, i.e., either more deterministic or one that could more fundamentally explain the reason for probabilities in a logical way. He could not abandon the belief that physics described the laws that govern "real things", nor could he abandon the belief that there are no explanations that contain contradictions, which had driven him to his successes explaining photons, relativity, atoms, and gravity.
In a 1926 letter to Max Born, Einstein made a remark that is now famous:
Quantum mechanics is certainly imposing. But an inner voice tells me it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the Old One. I, at any rate, am convinced that He does not throw dice.
To this, Bohr, who sparred with Einstein on quantum theory, retorted, "Stop telling God what He must do!" The Bohr-Einstein debates on foundational aspects of quantum mechanics happened during the Solvay Conferences.
Einstein was not rejecting probabilistic theories per se. Einstein himself was a great statistician[13], using statistical analysis in his works on Brownian motion and photoelectricity and in papers published before 1905; Einstein had even discovered Gibbs ensembles. He believed, however, that at the core reality behaved deterministically. Many physicists argue that experimental evidence contradicting this belief was found much later with the discovery of Bell's Theorem and Bell's inequality.
*Bose-Einstein statistics
n 1924, Einstein received a short paper from a young Indian physicist named Satyendra Nath Bose describing light as a gas of photons and asking for Einstein's assistance in publication. Einstein realized that the same statistics could be applied to atoms, and published an article in German (then the lingua franca of physics) which described Bose's model and explained its implications. Bose-Einstein statistics now describe any assembly of these indistinguishable particles known as bosons. The Bose-Einstein condensate phenomenon was predicted in the 1920s by Bose and Einstein, based on Bose's work on the statistical mechanics of photons, which was then formalized and generalized by Einstein. The first such condensate was produced by Eric Cornell and Carl Wieman in 1995 at the University of Colorado at Boulder. Einstein's original sketches on this theory were recovered in August 2005 in the library of Leiden University.[14]
Einstein also assisted Erwin Schrödinger in the development of the quantum Boltzmann distribution, a mixed classical and quantum mechanical gas model although he realized that this was less significant than the Bose-Einstein model and declined to have his name included on the paper.
*The Einstein refrigerator
Einstein and former student Leó Szilárd co-invented a unique type of refrigerator (usually called the Einstein refrigerator) in 1926.[15] On November 11, 1930, U.S. Patent 1,781,541 was awarded to Albert Einstein and Leó Szilárd. The patent covered a thermodynamic refrigeration cycle providing cooling with no moving parts, at a constant pressure, with only heat as an input. The refrigeration cycle used ammonia, butane, and water.
*World War II
When Adolf Hitler came to power in January 1933, Einstein was a guest professor at Princeton University, a position which he took in December 1932, after an invitation from the American educator, Abraham Flexner. In 1933, the Nazis passed "The Law of the Restoration of the Civil Service" which forced all Jewish university professors out of their jobs, and throughout the 1930s a campaign to label Einstein's work as "Jewish physics"—in contrast with "German" or "Aryan physics"—was led by Nobel laureates Philipp Lenard and Johannes Stark. With the assistance of the SS, the Deutsche Physik supporters worked to publish pamphlets and textbooks denigrating Einstein's theories and attempted to politically blacklist German physicists who taught them, notably Werner Heisenberg. Einstein renounced his Prussian citizenship and stayed in the United States, where he was given permanent residency. He accepted a position at the newly founded Institute for Advanced Study in Princeton Township, New Jersey. He became an American citizen in 1940, though he still retained Swiss citizenship.
In 1939, under the encouragement of Szilárd, Einstein sent a letter to President Franklin Delano Roosevelt urging the study of nuclear fission for military purposes, under fears that the Nazi government would be first to develop nuclear weapons. Roosevelt started a small investigation into the matter which eventually became the massive Manhattan Project. Einstein himself did not work on the bomb project, however.
The International Rescue Committee was founded in 1933 at the request of Albert Einstein to assist opponents of Adolf Hitler.
For more information, see the section below on Einstein's political views.
*Institute for Advanced Study
His work at the Institute for Advanced Study focused on the unification of the laws of physics, which he referred to as the Unified Field Theory. He attempted to construct a model which would describe all of the fundamental forces as different manifestations of a single force. This took the form of an attempt to unify the gravitational and electrodynamic forces, but was hindered because the strong and weak nuclear forces were not understood independently until around 1970, 15 years after Einstein's death. Einstein's goal of unifying the laws of physics under a single model survives in the current drive for unification of the forces.
*Generalized theory
Einstein began to form a generalized theory of gravitation with the Universal Law of Gravitation and the electromagnetic force in his first attempt to demonstrate the unification and simplification of the fundamental forces. In 1950 he described his work in a Scientific American article. Einstein was guided by a belief in a single statistical measure of variance for the entire set of physical laws. Einstein's Generalized Theory of Gravitation is a universal mathematical approach to field theory. He investigated reducing the different phenomena by the process of logic to something already known or evident.
Einstein postulated a four-dimensional space-time continuum expressed in axioms represented by five component vectors. Particles appear in his research as a limited region in space in which the field strength or the energy density are particularly high. Einstein treated subatomic particles as objects embedded in the unified field, influencing it and existing as an essential constituent of the unified field but not of it. Einstein also investigated a natural generalization of symmetrical tensor fields, treating the combination of two parts of the field as being a natural procedure of the total field and not the symmetrical and antisymmetrical parts separately. He researched a way to delineate the equations and systems to be derived from a variational principle.
Einstein became increasingly isolated in his research on a generalized theory of gravitation and was ultimately unsuccessful in his attempts. In particular, his pursuit of a unification of the fundamental forces ignored work in the physics community at large, most notably the discovery of the strong nuclear force and weak nuclear force.
*Final years
In 1948, Einstein served on the original committee which resulted in the founding of Brandeis University. A portrait of Einstein was taken by Yousuf Karsh on February 11 of that same year. In 1952, the Israeli government proposed to Einstein that he take the post of second president. He declined the offer, and is believed to be the only United States citizen ever to have been offered a position as a foreign head of state. On March 30, 1953, Einstein released a revised unified field theory.
He died at 1:15 AM[16] in Princeton hospital[17] in Princeton, New Jersey, on April 18, 1955 at the age of 76 from internal bleeding, which was caused by the rupture of an aortic aneurism, leaving the Generalized Theory of Gravitation unsolved. The only person present at his deathbed, a hospital nurse, said that just before his death he mumbled several words in German that she did not understand. He was cremated without ceremony on the same day he died at Trenton, New Jersey, in accordance with his wishes. His ashes were scattered at an undisclosed location.
An autopsy was performed on Einstein by Dr. Thomas Stoltz Harvey, who removed and preserved his brain. Harvey found nothing unusual with his brain, but in 1999 further analysis by a team at McMaster University revealed that his parietal operculum region was missing and, to compensate, his inferior parietal lobe was 15% wider than normal.[18] The inferior parietal region is responsible for mathematical thought, visuospatial cognition, and imagery of movement. Einstein's brain also contained 73% more glial cells than the average brain.